Deborah Fygenson talks to Physics World about her interest in biophysics

Five Biophysicists, including Deborah Fygenson, spoke with Jon Cartwright from the Institute of Physics about their careers and interest in the subject

Deborah Fygenson
Associate professor at the University of California, Santa Barbara, US

Deborah Fygenson studied atomic physics as an undergraduate at the Massachusetts Institute of Technology, and intended to focus on condensed-matter physics for her PhD at Princeton University. However, by the time it came to choosing a thesis topic she had become distracted by one of the university's new professors, Albert Libchaber – a veteran researcher in the physics of turbulence. However, it was not turbulence that Libchaber was promoting. "He was very clear that physics was dead, and biology was the future," says Fygenson. "The way he presented it was quite exciting – that there are physical phenomena within biology that the tools of molecular biology had made accessible to harder science, to physics-type studies."

In her current research, Fygenson is using cutting-edge tools such as DNA origami – a method of folding genetic material into 2D and 3D shapes – to work out how to recreate some of the nanostructures seen in biology. She hopes to learn why cells are built the way they are, and in the process discover how to build different nanostructures that might find uses in bioengineering.

For Fygenson, it is the "immediacy" of biophysics that makes the subject so attractive. "It's the potential for impact on human life, the phenomena being close by," she says. "I think that if we start to better understand the physical limitations imposed by biomaterials, we'll have fundamental insights into why biology is constructed the way it is."

Deborah Fygenson